Continuous medium theory for nonequilibrium solvation: I. How to correctly evaluate solvation free energy of nonequilibrium
نویسندگان
چکیده
Considering the influences of electrostatic potential Phi upon the change of solute charge distribution deltarho and rho upon the change deltaPhi at the same time, a more reasonable integral formula of dG = (1/2) integral (V) (rhodeltaPhi + Phideltarho)dV is used to calculate the change of the electrostatic free energy in charging the solute-solvent system to a nonequilibrium state, instead of the one of dG = integral (V) PhideltarhodV used before. This modification improves the expressions of electrostatic free energy and solvation free energy, in which no quantity of the intermediate equilibrium state is explicitly involved. Detailed investigation reveals that the solvation free energy of nonequilibrium only contains the interaction energy between the field due to the solute charge in vacuum, and the dielectric polarization at the nonequilibrium state. The solvent reorganization energies of forward and backward electron transfer reactions have been redefined because the derivations lead to a remarkable feature that these quantities are direction-dependent, unlike the theoretical models developed before. The deductions are given in the electric field-displacement form. Relevant discussions on the reliability of theoretical models suggested in this work have also been presented.
منابع مشابه
A molecularly based theory for electron transfer reorganization energy.
Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule's permanent dipole moment and polarizability, thus a...
متن کاملEquilibrium free energy differences from nonequilibrium computer simulations: Improving convergence by reducing dissipation
Title of dissertation: Equilibrium free energies from nonequilibrium simulations: Improving convergence by reducing dissipation Suriyanarayanan Vaikuntanathan, Doctor of Philosophy, 2011 Dissertation directed by: Professor Christopher Jarzynski Department of Chemistry and Biochemistry Institute for Physical Science and Technology The estimation of equilibrium free energy differences is an impor...
متن کاملOn the validity of linear response approximations regarding the solvation dynamics of polyatomic solutes.
The time-dependent fluorescence of a chromophore can be calculated from either nonequilibrium simulations, or, as long as linear response theory holds true, from equilibrium solvent fluctuations in the ground or excited state if the perturbation inflicted by the chromophore is small. The assumption of Gaussian statistics, in contrast, links the nonequilibrium dynamics to solvent fluctuations so...
متن کاملInteraction of Pyrimidine Nucleobases with Silicon Carbide Nanotube: Effect of Functionalization on Stability and Solvation
This study is about Complexes of Li doped silicon carbide nanotube with Thymine and Cytosine ingas phase and aqueous solutions. Li doped silicon carbide nanotube and its pyrimidine nucleobasecompounds were first modeled by Quantum mechanical calculations in gas phase and in water.Calculated binding energies indicated the stronger ability of thymine to functionalize silicon carbidenanotube than ...
متن کاملImportance sampling and theory of nonequilibrium solvation dynamics in water
We have devised a novel importance sampling method for nonequilibrium processes. Like transition path sampling, the method employs a Monte Carlo procedure to confine or bias the search through trajectory space. In this way, molecular dynamics trajectories consistent with the nonequilibrium dynamics of interest are generated efficiently. Using results of this sampling, we demonstrate that statis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational chemistry
دوره 25 4 شماره
صفحات -
تاریخ انتشار 2004